

Modeling the evolution of mineralogy in the EGS geothermal system of Soultz-sous-Forêts*

Yann Lucas¹, Alain Clément, Bertrand Fritz, Gerhard Schäfer

Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg/EOST, CNRS, 1 rue Blessig, F-67084 Strasbourg Cedex, France.

Abstract

- A modelling approach is considered to discuss different scenarios to actively stimulate the low-permeability granitic reservoir of Soultz-sous-Forêts, in terms of amount and duration of HCI solution injection.
- The approach used in this work is based on the geochemical code KIRMAT, which enables us to represent the geothermal reservoir using single-porosity and double-porosity models.
- The modelling results showed that chemical stimulation could significantly increase porosity and permeability; however, for both single and doubleporosity models, the improved zones are very limited and are only present within a few meters of the reinjection well.

KIRMAT code

The KIRMAT code can describe the feedback effect of the chemical and mineralogical evolution of porosity and permeability due to dissolution and precipitation reactions.

 The intrinsic permeability k (m²) is updated after each time step as follows:

$$\mathbf{k} = \mathbf{C}_0 \left[\phi^{c-1} \left(\frac{\phi^3}{(1-\phi)^2 S^2} \right) \right]^2$$

where $C_{0,} \varphi$ and S denote an experimental constant, the porosity of the porous medium and the grid cell surface in contact with the adjacent cell (m²), respectively.

 The porosity at the time increment n is determined as follows:

$$\phi^{n} = 1 - \left[\frac{S\Delta x(1-\phi^{n-1})+Bv^{n}}{S\Delta x}\right]$$

where φ^n and φ^{n-1} are the porosities at the time increments n and n-1, respectively; Δx is the cell length (m) and Bv^n is the absolute volume balance of all minerals at time increment n (m³).

Double-porosity medium

The mass balance equations of reactive transport:

$$\frac{\partial}{\partial t} \left(\phi^f \Psi_j^f \right) = \phi^f D\left(\frac{\partial^2 \Psi_j^f}{\partial x^2} \right) - U \frac{\partial \Psi_j^f}{\partial x} + \phi_j^f + \frac{\alpha}{e} \phi^f D_{diff} \left(\Psi_j^m - \Psi_j^f \right)$$

 in the matrix, where it is assumed that no flow and no mass transport take place:

$$\frac{\partial}{\partial t} \left(\phi^m \Psi_j^m \right) = \phi_j^m - \frac{\alpha}{e} \phi^m D_{diff} \left(\Psi_j^m - \Psi_j^f \right) \qquad (j = 1, \dots, N)$$

where Ψ_j^f and Ψ_j^m are the dissolved global concentrations of primary species j in fractured medium and matrix, respectively (mol.L⁻³); ϕ^f and ϕ^m are the porosity of fractured medium and matrix, respectively; D is the effective hydrodynamic dispersion coefficient (L².T⁻¹) in fractures; D_{diff} is the diffusion coefficient (L².T⁻¹) in fractures; D_{diff} is the diffusion coefficient (L².T⁻¹) in matrix; U is the Darcy velocity (L.T⁻¹); ϕ_j^f and ϕ_j^m are the sink terms corresponding to the geochemical fluxes in fractured medium and matrix, respectively (mole.L⁻³.T⁻¹); α is the surface contact between fractured medium and matrix (L²); \mathbf{e} is the volume contact between fractured medium and matrix (L³).

Single-porosity model

Main mineralogical compositions, corresponding volume fractions and the estimated reactive surface areas of the Soultz granite on the assumption that the fresh granite contains 90% of the volume fraction and the rest is vein alteration.

Minerals	Structural formula	Volume fraction (%)	Reactive surface area (m ² kg ⁻¹ H ₂ O)		
Quartz	SiO ₂	25.87	308.30		
K-Feldspar	KAISi ₃ O ₈	22.63	7457.55		
Albite	NaAlSi ₃ O ₈	36.25	8262.75		
Anorthite	Ca(Al ₂ Si ₂)O ₈	2.00	124.21		
K-Muscovite	KAl ₂ (AlSi ₃)O ₁₀ (ÕH) ₂	2.82	631.77		
Annite	KFe ₃ (AlSi ₃)O ₁₀ (OH) ₂	2.82	740.82		
Phlogopite	KMg ₃ (AlSi ₃)O ₁₀ (OH) ₂	2.82	622.69		
Calcite	CaČO ₃	0.46	112.19		
Mg-Illite	K _{0.85} Mg _{0.25} Al _{2.35} Si _{3.4} O ₁₀ (OH) ₂	0.87	6375.75		
Fe-Illite	Kn as Fen 25 Alz 35 Si3 4 O 10 (OH) 2	0.87	6687.79		
Al-Illite	K _{0.85} Al _{2.85} Si _{3.15} O ₁₀ (OH) ₂	0.87	6611.52		
Smectite	[Ca _{0.009} Na _{0.409} K _{0.024}][(Si _{3.738} Al _{0.262}] [Al, rapFe, rapMg, ratio(OH)]	0.97	5484.20		
Dolomite	CaMg(CO ₃) ₂	0.08	20.71		
Chamosite	Fe ₅ Al(AlSi ₃)O ₁₀ (OH) ₈	0.33	13.72		
Clinochlore	Mg ₅ Al(AlSi ₃)O ₁₀ (OH) ₈	0.33	10.79		
Physical properties					
Porosity	5 %				
Permeability	10 ⁻¹⁶ m ²				

Double-porosity model

The tested ratio of surface contact and volume contact between fractured and matrix zones (*a/e*) are 1000 and 10000

	Matrix			Fracture	
	Volume fraction	Reactive surface area		Volume fraction	Reactive surface area
Minerals	(%)	(m ² kg ⁻¹ H ₂ O)	Minerals	(%)	(m ² kg ⁻¹ H ₂ O)
Quartz	24.2	288.40	Quartz	40.9	487.42
K-Feldspar	23.6	7777.20	K-Feldspar	13.9	4580.64
Albite	40.5	9231.49	Calcite	3.9	951.17
Anorthite	2	124.21	Mg-Illite	8.7	63757.49
Muscovite	3.13	701.22	Fe-Illite	8.7	66877.88
Annite	3.13	822.26	Al-Illite	8.7	66115.20
Phlogopite	3.13	691.15	Smectite	9.7	54841.96
Calcite	0.3	73.17	Dolomite	0.8	207.06
			Chamosite	2.4	137.19
			Clinochlore	2.4	107.86
Physical propertie	19 19 19 19 19 19 19 19 19 19 19 19 19 1		Physical propertie	e .	
Porosity		10%	Porosity	•	1%
Permeability		10 ⁻¹⁶ m ²	Permeability		10 ⁻¹⁴ m ²

Reference case

Single-porosity model

(skep) amit

Sensitivity study cases

Case 1: change of the Darcy velocity, where the Darcy velocities are equal to 0.1 m.h⁻¹, 0.2 m.h⁻¹ and 2 m.h⁻¹: similar to those of the reference case

Case 2: increase of the injection duration by a factor 2: similar to the reference case

Case 3: increase of the acid concentration, pH=0: from 2 to 6 meters away from the injection well, the porosity decreases drastically Case 4: increase of

Double-porosity model α/e = 1000

Conclusions

- The reference case shows an increase in porosity resulting from a strong dissolution of the primary minerals such as calcite and anorthite in the zone around the acid-injected well, but precipitation of secondary minerals such as beidellite, which leads to a porosity decrease in the rest of the system
- The sensitivity study cases show no significant improvements, except for Case 4 when there is more calcite in the system, which is more affected by dissolution
- The comparison of the modelling results from the single porosity and double porosity models confirm that the impacted zone is limited to a few metres around the acid-injected well.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.691728

* Lucas, Y., Ngo, V. V., Clément, A., Fritz, B., Schäfer, G. (2020). Modelling acid stimulation in the enhanced geothermal system of Soultz-sous-Forêts (Alsace, France). Geothermics, 85, 101772. ¹email addresses: ylucas@unistra.fr;